Under DevelopmentPlease cite this work as:Stefanidou, S., Paraskevopoulos, E., Papanikolaou, V., Kappos, A.J. "An online platform for bridge-specific fragility analysis of as-built and retrofitted bridges", Bulletin of Earthquake Engineering, 20, 1717-1737 (2022). https://doi.org/10.1007/s10518-021-01299-3

The Bridge Database - ESPA

Elastomeric Bearings

Table 1: Elastomeric Bearings : Limit states and threshold values

(R): limit state definition based on soa ,(E): Experimental, (S): Simulation or analysis

Engineering Demand Parameter: Shear deformation γ (%)
ReferenceLimit StateShear deformation (γ)Description
. (E) Mori, A., Moss, P.J., Carr, A. J., Cooke, N. (1997)
https://dx.doi.org/10.12989/sem.1997.5.4.451
LS1150%Yielding of steel plates
LS4300%Bearing failure
. (E) Bousias, E., Palios, X., Alexakis Ch., Strepelias, E., Fardis, M., Raptopoulos, S. (2008)LS3150%Detachment of elastomers and steel plates
. (R) Cardone, D. (2013) https://doi.org/10.1002/eqe.2396LS1150%, bolted pads γ(dfr), slipping unbolted pads γ(dpad/3), rolling-over unbolted padsSlipping between neoprene pads and concrete surfaces
LS2200%, bolted pads γ(dfr+1/3(dpad-dfr)), slipping unbolted pads γ(dpad/2), rolling-over unbolted padsShear deformation limit for linear viscoelasticbehvior of bolted neoprene pads
LS3300%, bolted pads γ(dpad), slipping unbolted pads γ(dpad), rolling-over unbolted padsRubber shear failure (bolted pads), slipping between neoprene concrete surface and roll-over (unbolted pads)
LS4dunsUnseating
. (E) Konstantinidis et al. (2008)LS3150%-225%Roll-over
. (E) LaFave et al. (2013)LS153-85%Tension/shear failure of anchors
LS2100-200%Initiation of slipping
LS4400%Unseating
. (E) Mori, A., Moss, P.J., Cooke, N., Carr, A. J. (1999) https://doi.org/10.1193%2F1.1586038LS3200%Bearing Uplift
. (E) Mori, A., Moss, P.J., Carr, A. J., Cooke, N. (1997) https://dx.doi.org/10.12989/sem.1997.5.4.451LS2106-150%Yielding of steel plates
. Moschonas, I. F., Kappos, A. J., Panetsos, P., Papadopoulos, V., Makarios, T., Thanopoulos, P. (2009) https://doi.org/10.1007/s10518-008-9077-2LS120%Minor damage
LS2150%Moderate damage
LS3200%Major damage
LS4500%Stability failure (toppling)
. (E) Nielson, B. (2005)LS1γ(Δ=30 mm), long. & transv.Deformation of slight damage
LS2γ(Δ=100 mm), long. & transv.Possible dowel fracture
LS3γ(Δ=150 mm), long. & transv.Dowel fracture, repair requirement
LS4γ(Δ=255 mm), long. & transv.Unseating
. (S) Stefanidou S. & Kappos A.(2017) https://doi.org/10.1002/eqe.2774LS120%Initiation of nonlinear behaviour (yielding displacement of piers), potential yielding of anchor bolts and cracking of pedestals.
LS2100%Visible damage to the bearing; yield of steel shims
LS3200%Lift off at the edge of the bearing, uplift and rocking; may cause delamination, bonding failure between rubber layers and steel shim plates
LS4300%Lift-off, rotation; unseating, failure of bearings.
. (S+R) Zhang, J. and Huo, Y. (2009) https://doi.org/10.1016/j.engstruct.2009.02.017LS1100%Slight damage (strain limit for linear behavior of rubber)
LS2150%Moderate damage
LS3200%Extensive damage (Initiation of hardening of elastomeric material)
LS4250%Complete damage (significant pounding or unseating)

References

  1. Aviram, A., Mackie, K. R., Stojadinovic, B. (2008). Effect of abutment modeling on the seismic response of bridge structures, Earthquake Engineering and Engineering Vibration, Vol. 7, No. 4, pp 395 – 402, DOI: https://doi.org/10.1007/s11803-008-1008-3.
  2. Bousias, E., Palios, X., Alexakis, C., Strepelias, I., Fardis, M., Raptopoulos, S. (2008). Experimental and analytical study of seismically isolated bridges with or without additional damping, 3rd Hellenic Conference on Earthquake Engineering and Engineering Seismology, November 5-7, 2008 (in Greek).
  3. Cardone, D. (2013). Displacement limits and performance displacement profiles in support of direct displacement-based seismic assessment of bridges, Earthquake Engineering & Structural Dynamics, DOI: http://dx.doi.org/10.1002/eqe.2396.
  4. Konstantinidis, D., J.M. Kelly, and N. Makris. (2008). Experimental Investigations on the Seismic Response of Bridge Bearings, Earthquake Engineering Research Center, Report No. EERC 2008-02, College of Engineering, University of California, Berkeley, CA.
  5. LaFave, J., Fahnestock, L., Foutch, D., Steelman, J., Revell, J., Filipov, E., Hajjar, J. (2013). Experimental Investigation of the Seismic Response of Bridge Bearings, Research Report No. FHWA-ICT-13-002, Illinois Center for Transportation.
  6. Mori, A., Moss, P. J., Cooke, N., Carr, A. J. (1999). The Behavior of Bearings Used for Seismic Isolation under Shear and Axial Load, Earthquake Spectra, Vol. 15, No. 2, pp 199-224, https://doi.org/10.1193%2F1.1586038.
  7. Mori, A., Moss, P. J., Carr, A. J., Cooke, N. (1997). Behaviour of laminated elastomeric bearings, Structural Engineering and Mechanics, Vol. 5, No. 4, pp 451-469, DOI: http://dx.doi.org/10.12989/sem.1997.5.4.451.
  8. Moschonas, I. F., Kappos, A. J., Panetsos, P., Papadopoulos, V., Makarios, T., Thanopoulos, P. (2009). Seismic fragility curves for Greek bridges: methodology and case studies, Bulletin of Earthquake Engineering, Vol. 7, pp 439-368, https://doi.org/10.1007/s10518-008-9077-2.
  9. Nielson, B. G. (2005). Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones, PhD Thesis, Georgia Institute of Technology, December, 2005.
  10. Stefanidou, S. & Kappos A. (2017). Methodology for the development of bridge-specific fragility curves, Earthquake Engineering and Structural Dynamics, vol. 46, pp 73-93, https://doi.org/10.1002/eqe.2774.
  11. Zhang, J. and Huo, Y. (2009). Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method, Engineering Structures, Vol. 31, pp 1648-1660, https://doi.org/10.1016/j.engstruct.2009.02.017.