Under DevelopmentPlease cite this work as:Stefanidou, S., Paraskevopoulos, E., Papanikolaou, V., Kappos, A.J. "An online platform for bridge-specific fragility analysis of as-built and retrofitted bridges", Bulletin of Earthquake Engineering, 20, 1717-1737 (2022). https://doi.org/10.1007/s10518-021-01299-3

The Bridge Database - ESPA

As Built Piers

Hollow Rectangular Piers

Table 1: Hollow Rectangular Piers: Limit state thresholds in terms of drift

Engineering Demand Parameter: Drift (%)
ReferencesLimit StatesThreshold ValuesDescriptionLoading TypeSpecimen Characteristics
Calvi, G.M., Pavese, A., Rasulo, A., Bolognini, D. (2005)LS3Failure of transverse reinforcement accompanied by longitudinal bar buckling Cyclic loading
Cassese, P., Ricci, P., Verderame, G. M. (2017)LS1Yielding of longitudinal barsCyclic loading
LS2Concrete cover spalling and onset of long. bars buckling
LS3Complete concrete cover spalling and severe buckling of longitudinal bars
LS4Crushing of concrete at the flanges, failure in tension of longitudinal bars
Delgado, R., Delgado, P., Vila Pouca, N., Arede, A., Rocha, P., Costa, A. (2009, shear dominated behaviorLS1Initiation of crackingCyclic loading
LS1-LS2Cracks of width 1.5 mm (design prior to EC8 establishment) and 0.9 mm (EC8 compliant design)
LS2Cracks of width > 1.5 mm, spalling of concrete cover
LS2Extended spalling of concrete cover
Mander, J. B., Priestley, M.J.N., Park, R. (1983)LS1YieldingCyclic loading
LS3Extended concrete spalling/ bar bucking initiation/fracture of transverse reinforcement
Mo, Y., Yeh, Y. K., Zhong, J., Hsu, T. T.C. (2006)LS3Concrete crushingCyclic loading
Pinto, Molina, Tsionis (2003), deficient columnsLS4Fracture of longitudinal reinforcement after bucklingCyclic loading
Qiang, Xiuli, Zhou, Lee (2013)LS1-LS2Yielding of longitudinal reinforcement in tensionCyclic loading
LS3Buckling of longitudinal reinforcement followed by bar fracture
Zhang, Y., Harries, K.A., Yuan, W.C. (2013)LS2Concrete cover spallingCyclic loading
LS3Extended concrete cover spalling and buckling of long. bars

References

  1. Calvi, G.M., Pavese, A., Rasulo, A., Bolognini, D. (2005). Experimental and Numerical Studies on the Seismic Response of R.C. Hollow Bridge Piers. Bull Earthquake Eng 3, 267–297. https://doi.org/10.1007/s10518-005-2240-0.
  2. Cassese, P., Ricci, P., Verderame, G. M. (2017). Experimental study on the seismic performance of existing reinforced concrete bridge piers with hollow rectangular section, Engineering Structures, Vol. 144, pp 88-106, http://dx.doi.org/10.1016/j.engstruct.2017.04.047
  3. Delgado, R., Degado, P., Pouca, N. V., Aréde, A., Rocha, P., Costa, A. (2009). Shear effects on hollow section piers under seismic actions: experimental and numerical analysis, Bulletin of Earthquake Engineering, Vol. 7, pp 377-389, https://doi.org/10.1007/s10518-008-9098-x.
  4. Mander, J. B., Priestley, M. J. N., Park, R. (1983). Behaviour or Ductile Hollow Reinforced Columns, Third South Pacific Regional Conference on Earthquake Engineering, Wellington, May, 1983. Bull. of the NZSEE, Vol. 16, No. 4, 273-290.
  5. Mo, Y.L., Yeh, Y. K., Zhong, J., Hsu, T. T.C. (2006). Seismic Behavior of Shear-Critical Hollow Bridge Columns, Structures Congress, May 18-21, 2006, St Louis, Missouri, United States.
  6. Pinto, A. V., Molina, J., Tsionis, G. (2003). Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section, Earthquake Engineering and Structural Dynamics, Vol. 32, pp.1995-2012, https://doi.org/10.1002/eqe.311.
  7. Qiang, H., Xiuli, D., Zhou, Y., Lee, G. C. (2013). Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads, Earthquake Engineering and Engineering Vibration, Vol. 12, pp 433-445, https://doi.org/0.1007/s11803-013-0184-y.
  8. Zhang, Y., Harries, K.A., Yuan, W.C. (2013). Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete, Engineering Structures, vol.48, pp 255-265, https://doi.org/10.1016/j.engstruct.2012.09.040.

Table 2: Hollow Rectangular Piers: Limit state thresholds in terms of displacement ductility

Engineering Demand Parameter: Displacement ductility (μd)
ReferencesLimit StatesThreshold ValuesDescriptionLoading TypeSpecimen Characteristics
Cassese, P., Ricci, P., Verderame, G. M. (2017)LS1Yielding of longitudinal barsCyclic loading
LS2Concrete cover spalling and onset of long. bars buckling
LS3Complete concrete cover spalling and severe buckling of longitudinal bars
LS4Crushing of concrete at the flanges, failure in tension of longitudinal bars
Mander, J. B., Priestley, M.J.N., Park, R. LS1YieldingCyclic loading
LS3Spalling of concrete cover
Mo, Y., Yeh, Y. K., Zhong, J., Hsu, T. T.C. (2006)LS3Concrete crushingCyclic loading
Priestley, M. J. N. and Park, R. (1987)LS3Fracture of hoops and longitudinal bar bucklingCyclic loading
Zhang, Y., Harries, K.A., Yuan, W.C. (2013)LS2Concrete cover spallingCyclic loading
LS3Extended concrete cover spalling and buckling of long. bars

References

  1. Cassese, P., Ricci, P., Verderame, G. M. (2017). Experimental study on the seismic performance of existing reinforced concrete bridge piers with hollow rectangular section, Engineering Structures, Vol. 144, pp 88-106, http://dx.doi.org/10.1016/j.engstruct.2017.04.047
  2. Mander, J. B., Priestley, M. J. N., Park, R. (1983). Behaviour or Ductile Hollow Reinforced Columns, Third South Pacific Regional Conference on Earthquake Engineering, Wellington, May, 1983. Bull. of the NZSEE, Vol. 16, No. 4, 273-290.
  3. Mo, Y.L., Yeh, Y. K., Zhong, J., Hsu, T. T.C. (2006). Seismic Behavior of Shear-Critical Hollow Bridge Columns, Structures Congress, May 18-21, 2006, St Louis, Missouri, United States.
  4. Priestley, M. J. N. and Park, R. (1987). Strength and Ductility of Concrete Bridge Columns Under Seismic Loading, ACI Structural Journal, No. 84-S8., pp 61-76, https://doi.org/10.14359/2800.
  5. Zhang, Y., Harries, K.A., Yuan, W.C. (2013). Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete, Engineering Structures, vol.48, pp 255-265, https://doi.org/10.1016/j.engstruct.2012.09.040.